Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mayo Clin Proc ; 96(8): 2081-2094, 2021 08.
Article in English | MEDLINE | ID: covidwho-1336718

ABSTRACT

OBJECTIVE: To rapidly exclude severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using artificial intelligence applied to the electrocardiogram (ECG). METHODS: A global, volunteer consortium from 4 continents identified patients with ECGs obtained around the time of polymerase chain reaction-confirmed COVID-19 diagnosis and age- and sex-matched controls from the same sites. Clinical characteristics, polymerase chain reaction results, and raw electrocardiographic data were collected. A convolutional neural network was trained using 26,153 ECGs (33.2% COVID positive), validated with 3826 ECGs (33.3% positive), and tested on 7870 ECGs not included in other sets (32.7% positive). Performance under different prevalence values was tested by adding control ECGs from a single high-volume site. RESULTS: The area under the curve for detection of acute COVID-19 infection in the test group was 0.767 (95% CI, 0.756 to 0.778; sensitivity, 98%; specificity, 10%; positive predictive value, 37%; negative predictive value, 91%). To more accurately reflect a real-world population, 50,905 normal controls were added to adjust the COVID prevalence to approximately 5% (2657/58,555), resulting in an area under the curve of 0.780 (95% CI, 0.771 to 0.790) with a specificity of 12.1% and a negative predictive value of 99.2%. CONCLUSION: Infection with SARS-CoV-2 results in electrocardiographic changes that permit the artificial intelligence-enhanced ECG to be used as a rapid screening test with a high negative predictive value (99.2%). This may permit the development of electrocardiography-based tools to rapidly screen individuals for pandemic control.


Subject(s)
Artificial Intelligence , COVID-19/diagnosis , Electrocardiography , Case-Control Studies , Humans , Predictive Value of Tests , Sensitivity and Specificity
3.
Int J Cardiol ; 326: 114-123, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-898899

ABSTRACT

BACKGROUND: An artificial intelligence-augmented electrocardiogram (AI-ECG) can identify left ventricular systolic dysfunction (LVSD). We examined the accuracy of AI ECG for identification of LVSD (defined as LVEF ≤40% by transthoracic echocardiogram [TTE]) in cardiac intensive care unit (CICU) patients. METHOD: We included unique Mayo Clinic CICU patients admitted from 2007 to 2018 who underwent AI-ECG and TTE within 7 days, at least one of which was during hospitalization. Discrimination of the AI-ECG for LVSD was determined using receiver-operator characteristic curve (AUC) values. RESULTS: We included 5680 patients with a mean age of 68 ± 15 years (37% females). Acute coronary syndrome (ACS) was present in 55%. LVSD was present in 34% of patients (mean LVEF 48 ± 16%). The AI-ECG had an AUC of 0.83 (95% confidence interval 0.82-0.84) for discrimination of LVSD. Using the optimal cut-off, the AI-ECG had 73%, specificity 78%, negative predictive value 85% and overall accuracy 76% for LVSD. AUC values were higher for patients aged <70 years (0.85 versus 0.80), males (0.84 versus 0.79), patients without ACS (0.86 versus 0.80), and patients who did not undergo revascularization (0.84 versus 0.80). CONCLUSIONS: The AI-ECG algorithm had very good discrimination for LVSD in this critically-ill CICU cohort with a high prevalence of LVSD. Performance was better in younger male patients and those without ACS, highlighting those CICU patients in whom screening for LVSD using AI ECG may be more effective. The AI-ECG might potentially be useful for identification of LVSD in resource-limited settings when TTE is unavailable.


Subject(s)
Artificial Intelligence , Ventricular Dysfunction, Left , Aged , Aged, 80 and over , Echocardiography , Electrocardiography , Female , Humans , Intensive Care Units , Male , Middle Aged , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/epidemiology
4.
Mayo Clin Proc ; 95(11): 2464-2466, 2020 11.
Article in English | MEDLINE | ID: covidwho-779413

ABSTRACT

Coronavirus disease 2019 (COVID-19) can result in deterioration of cardiac function, which is associated with high mortality. A simple point-of-care diagnostic test to screen for ventricular dysfunction would be clinically useful to guide management. We sought to review the clinical experience with an artificial intelligence electrocardiogram (AI ECG) to screen for ventricular dysfunction in patients with documented COVID-19. We examined all patients in the Mayo Clinic system who underwent clinically indicated electrocardiography and echocardiography within 2 weeks following a positive COVID-19 test and had permitted use of their data for research were included. Of the 27 patients who met the inclusion criteria, one had a history of normal ventricular function who developed COVID-19 myocarditis with rapid clinical decline. The initial AI ECG in this patient indicated normal ventricular function. Repeat AI ECG showed a probability of ejection fraction (EF) less than or equal to 40% of 90.2%, corroborated with an echocardiographic EF of 35%. One other patient had a pre-existing EF less than or equal to 40%, accurately detected by the algorithm before and after COVID-19 diagnosis, and another was found to have a low EF by AI ECG and echocardiography with the COVID-19 diagnosis. The area under the curve for detection of EF less than or equal to 40% was 0.95. This case series suggests that the AI ECG, previously shown to detect ventricular dysfunction in a large general population, may be useful as a screening tool for the detection of cardiac dysfunction in patients with COVID-19.


Subject(s)
Artificial Intelligence , Coronavirus Infections/complications , Electrocardiography/methods , Pneumonia, Viral/complications , Ventricular Dysfunction, Left/diagnosis , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Echocardiography , Feasibility Studies , Female , Humans , Male , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2 , Ventricular Dysfunction, Left/virology
5.
Mayo Clin Proc ; 95(9): 1898-1905, 2020 09.
Article in English | MEDLINE | ID: covidwho-735304

ABSTRACT

OBJECTIVE: To model and compare effect of digital contact tracing versus shelter-in-place on severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2) spread. METHODS: Using a classical epidemiologic framework and parameters estimated from literature published between February 1, 2020, and May 25, 2020, we modeled two non-pharmacologic interventions - shelter-in-place and digital contact tracing - to curb spread of SARS-CoV-2. For contact tracing, we assumed an advanced automated contact tracing (AACT) application that sends alerts to individuals advising self-isolation based on individual exposure profile. Model parameters included percentage population ordered to shelter-in-place, adoption rate of AACT, and percentage individuals who appropriately follow recommendations. Under influence of these variables, the number of individuals infected, exposed, and isolated were estimated. RESULTS: Without any intervention, a high rate of infection (>10 million) with early peak is predicted. Shelter-in-place results in rapid decline in infection rate at the expense of impacting a large population segment. The AACT model achieves reduction in infected and exposed individuals similar to shelter-in-place without impacting a large number of individuals. For example, a 50% AACT adoption rate mimics a shelter-in-place order for 40% of the population and results in a greater than 90% decrease in peak number of infections. However, as compared to shelter-in-place, with AACT significantly fewer individuals would be isolated. CONCLUSION: Wide adoption of digital contact tracing can mitigate infection spread similar to universal shelter-in-place, but with considerably fewer individuals isolated.


Subject(s)
Communicable Disease Control/methods , Contact Tracing/methods , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Software , Automation , Betacoronavirus , COVID-19 , Coronavirus Infections/transmission , Humans , Models, Theoretical , Pneumonia, Viral/transmission , SARS-CoV-2 , Social Isolation
SELECTION OF CITATIONS
SEARCH DETAIL